A Temporal-Difference Learning Method Using Gaussian State Representation for Continuous State Space Problems
نویسندگان
چکیده
منابع مشابه
Predictive State Temporal Difference Learning
We propose a new approach to value function approximation which combines linear temporal difference reinforcement learning with subspace identification. In practical applications, reinforcement learning (RL) is complicated by the fact that state is either high-dimensional or partially observable. Therefore, RL methods are designed to work with features of state rather than state itself, and the...
متن کاملContinuous-Domain Reinforcement Learning Using a Learned Qualitative State Representation
We present a method that allows an agent to learn a qualitative state representation that can be applied to reinforcement learning. By exploring the environment the agent is able to learn an abstraction that consists of landmarks that break the space into qualitative regions, and rules that predict changes in qualitative state. For each predictive rule the agent learns a context consisting of q...
متن کاملState Space representation of non-stationary Gaussian Processes
The state space (SS) representation of Gaussian processes (GP) has recently gained a lot of interest. The main reason is that it allows to compute GPs based inferences in O(n), where n is the number of observations. This implementation makes GPs suitable for Big Data. For this reason, it is important to provide a SS representation of the most important kernels used in machine learning. The aim ...
متن کاملTemporal Difference Learning in Continuous Time and Space
A continuous-time, continuous-state version of the temporal difference (TD) algorithm is derived in order to facilitate the application of reinforcement learning to real-world control tasks and neurobiological modeling. An optimal nonlinear feedback control law was also derived using the derivatives of the value function. The performance of the algorithms was tested in a task of swinging up a p...
متن کاملA State Space Compression Method Based on Multivariate Analysis for Reinforcement Learning in High-Dimensional Continuous State Spaces
SUMMARY A state space compression method based on multivariate analysis was developed and applied to reinforcement learning for high-dimensional continuous state spaces. First, useful components in the state variables of an environment are extracted and meaningless ones are removed by using multiple regression analysis. Next, the state space of the environment is compressed by using principal c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Japanese Society for Artificial Intelligence
سال: 2014
ISSN: 1346-0714,1346-8030
DOI: 10.1527/tjsai.29.157